The Cohomology Ring of the Complement of a Finite Family of Linear Subspaces in a Complex Projective Space
نویسنده
چکیده
The integral cohomology ring of the complement of an arrangement of linear subspaces of a finite dimensional complex projective space is determined by combinatorial data, i.e. the intersection poset and the dimension function.
منابع مشابه
UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
متن کاملOn the Spectrum of the Equivariant Cohomology Ring
If an algebraic torus T acts on a complex projective algebraic variety X then the affine scheme Spec H∗ T (X;C) associated to the equivariant cohomology is often an arrangement of linear subspaces of the vector space H 2 (X;C). In many situations the ordinary cohomology ring of X can be described in terms of this arrangement.
متن کاملOn the Quantum Cohomology of Blow-ups of Projective Spaces along Linear Subspaces
We give an explicit presentation with generators and relations of the quantum cohomology ring of the blow-up of a projective space along a linear subspace.
متن کاملAffinization of Segre products of partial linear spaces
Hyperplanes and hyperplane complements in the Segre product of partial linear spaces are investigated. The parallelism of such a complement is characterized in terms of the point-line incidence. Assumptions, under which the automorphisms of the complement are the restrictions of the automorphisms of the ambient space, are given. An affine covering for the Segre product of Veblenian gamma spaces...
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004